
Outpost: A Responsive Lightweight Watchtower
Majid Khabbazian∗
mkhabbazian@ualberta.ca

University of Alberta

Tejaswi Nadahalli∗
tejaswin@ethz.ch

ETH Zürich

Roger Wattenhofer∗
wattenhofer@ethz.ch

ETH Zürich

ABSTRACT
In the context of second layer payments in Bitcoin, and
specifically the Lightning Network, we propose a design for
a lightweight watchtower that does not need to store signed
justice transactions. We alter the structure of the opening
and commitment transactions in Lightning channels to
encode justice transactions as part of the commitment
transactions. With that, a watchtower just needs to watch
for specific cheating commitment transaction IDs on the
blockchain and can extract signed justice transactions
directly from these commitment transactions that appear on
the blockchain. Our construction saves an order of
magnitude in storage over existing watchtower designs. In
addition, we let the watchtower prove to each channel that
it has access to all the data required to do its job, and can
therefore be paid-per-update.

KEYWORDS
bitcoin, payment channels, lightning network, watchtower

ACM Reference Format:
Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer.
2019. Outpost: A Responsive Lightweight Watchtower. In AFT ’19:
Conference on Advances in Financial Technologies, October 21–23,
2019, Zürich, Switzerland. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3318041.3355464

1 INTRODUCTION
Bitcoin [10] created a viable digital peer to peer payment
system, and has been running for many years with no major
problems.With a cap of 1MB on the size of each block, Bitcoin
inherently limits the number of transactions that can fit into

∗Authors are listed alphabetically.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
AFT ’19, October 21–23, 2019, Zürich, Switzerland
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6732-5/19/10. . . $15.00
https://doi.org/10.1145/3318041.3355464

a block. The average size of a transaction is 300 bytes; with
a block about every 10 minutes, the throughput is bounded
to about 6 transactions per second. One may increase the
block size and/or decrease the time between two blocks to
achieve a higher throughput. However, these are consensus
rule changes, and as such not easy to implement. Changing
these parameters also adversely affect other security aspects
of the Bitcoin network [8].
Duplex Micropayment Channels [6] and the Lightning

Network [12] propose one type of solution to the scaling
problem, allowing for higher throughput without changing
Bitcoin’s consensus rules. The idea of both these protocols
is to handle most transactions outside the blockchain, in
so-called channels. Bitcoin users would build a network of
channels between them, and most transactions are handled
in these channels. The Bitcoin blockchain would only be
needed to setup and close these channels, and in this meta
role, it handles far less transactions.
The Lightning Network in particular has seen

implementations from multiple teams of developers and
researchers (LND [4], Eclair [3], C-Lightning [2], LIT [9]),
all implementing the same specifications [1]. All of these
implementations build node software that helps form a peer
to peer network of payment channels where value
denominated in Bitcoin can flow from node to node.

However, there is still a major problem: Lightning channel
payments can be received safely only if the receiving node
stays online. Payment receivers risk losing payments if they
go offline without closing channels that sent these payments,
since a payment issuer can try to close a channel using an
outdated earlier channel state. However, opening and closing
channels are expensive blockchain transactions, which nodes
want to avoid. To keep channels open and be able to go
offline, nodes need the services of so-called watchtowers
[11] to watch the Bitcoin blockchain and prevent fraudulent
channel closures.

Watchtowers are always-online services run by impartial
parties, either for an altruistic motive (to see the Lightning
Network succeed), or for a business motive (to get paid by
the participant(s) of a channel). If we consider the business
motive, watchtower services can be paid either per fraud
detected, or simply for watching. Given that the Lightning
protocol punishes frauds, we posit that it is better to pay
watchtowers based on their actual cost of watching, which
is directly proportional to the amount of data they have

https://doi.org/10.1145/3318041.3355464
https://doi.org/10.1145/3318041.3355464

AFT ’19, October 21–23, 2019, Zürich, Switzerland Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer

to store. This, in turn, depends on the number of channels
they watch and the number of transactions that each of
these channels have. On the other side, given that frauds are
rare, we also need a mechanism which allows a watchtower
to prove to channels that it is indeed doing its job. In our
construction, after each transaction, the channel (one or
both of its parties) sends the watchtower some data and fees.
The watchtower, at any point in the future, can be asked
for a proof by the channel that the watchtower was online
as new Bitcoin blocks were mined and had access to this
channel transaction data. This proof-scheme makes a pay-
per-transaction scheme palatable to channel operators.

The watchtower’s ability to perform its service depends on
being able to watch the Bitcoin blockchain for a large number
of transactions, with specific transaction IDs (or prefixes of
IDs). Watchtower implementations need to have access to
(and possibly store) this vast set of transaction IDs (txids)
and accompanying data per txid that contain information on
what to do when a specific txid shows up on the blockchain.
LND’s proof of concept implementation of watchtowers [5]
requires around 300-350 additional bytes of storage per txid.
A single watchtower could watch millions of channels and
each channel could have billions of these micro-transactions.
This places a large storage cost on the watchtower, as it has to
store this 350 byte blob per transaction, for every transaction
it knows about.
We propose Outpost, a construction that reduces this

overhead to 16 bytes of additional storage. We do this using
a novel lightning channel structure that changes the
commitment transactions. In particular, we encode the
information of a possible future transaction Tf in a present
transaction Tp , so thatTf spends the output of Tp itself. This
is non-trivial given how Bitcoin constructs and uses its
txids. Outpost’s reduction in storage costs will directly
translate to the reduction in the operational cost of
maintaining watchtowers. We believe that this will prompt
more developers to run watchtowers, and thereby help the
Lightning Network succeed.

2 BACKGROUND
2.1 Lightning Network
The Lightning Network is a peer to peer network of nodes
running the Lightning node software. Each peer is
connected to other peers through a specific construct called
a payment channel. A payment channel is opened with a
Bitcoin transaction that commits UTXOs (Unspent
Transaction Outputs) controlled by two parties into a single
output that is now controlled by a multisig that both parties
have to sign to be able to spend in a future transaction. This
is called the opening transaction (topen). Once the payment
channel is opened, the two parties exchange signed Bitcoin

transactions between each other. In these signed
transactions, the total value of topen is allotted to each party
depending on how the parties want value to flow between
them. For example, if the payment channel was opened with
5 BTC from Alice and 10 BTC from Bob, a subsequent state
might split the total 15 BTC of the channel so that Alice gets
7 BTC and Bob gets 8 BTC. This new split indicates a 2 BTC
value flow from Bob to Alice, possibly for some goods or
service that Bob received from Alice. This new division of
topen′s balance is established by Alice and Bob by
exchanging partially signed commitment transactions (ctxs)
with each other that they can sign themselves and broadcast
later. At this point, the payment channel can also be closed
with a closing transaction if both Alice and Bob agree to it.
This is done by signing the multisig UTXO created by topen
and sending 7 BTC to Alice and 8 BTC to Bob.
Typically, a channel is kept open by exchanging further

ctxs that change the division of the balance between Alice
and Bob as more goods and services go from Alice to Bob
or vice versa. Note that at any time, if either party goes
permanently offline, the counterparty can sign and broadcast
their latest ctx to “commit” the latest state of the channel to
the blockchain. The ability to unilaterally close the channel
in case the other party goes offline makes this construction
trustless. As a penalty for unilaterally closing the channel, the
broadcasting party is made to wait for a timelock, whereas
the counterparty (the one who might have gone offline) gets
to spend their share of the channel instantly. This setup can
be argued to be fair, because if a party broadcasts their ctx
even if the counterparty is online, they get their share of the
balance, but have to wait to spend it. The counterparty does
not have to wait in this case.
Importantly, a party can try to unilaterally close a

channel with a ctx (say, previous_ctx) that is not the latest
agreed upon ctx (say, latest_ctx). Every party potentially
has many such previous_ctxs in their storage going back all
the way to the channel opening. This allows the dishonest
party to cheat the honest counterparty by picking an old,
more favorable previous_ctx from the past and broadcasting
it. Lightning channels handle this cheating possibility by
allowing latest_ctx to be exchanged only if they are also
accompanied by ways of revoking the immediate
previous_ctx. This revocation is handled through a
revocation key that can allot the entire channel balance to
the victim’s control. This gives both parties a strong
incentive to be honest. In case Alice tries to cheat by
publishing a previous_ctx, Alice does not get her share of
the channel balance immediately because it is timelocked,
thereby giving Bob a time window to penalize this cheating
previous_ctx. Bob looks up its corresponding revocation key
that he got from Alice earlier, and uses it to construct the
so-called justice transaction (jtx) to penalize this

Outpost: A Responsive Lightweight Watchtower AFT ’19, October 21–23, 2019, Zürich, Switzerland

previous_ctx. To be able to detect cheating, Bob has to
monitor the blockchain for all previous_ctxs so that he can
then construct the corresponding jtx and broadcast it. This
is possible only if Bob is online whenever a new Bitcoin
block is mined. If Bob is offline, Alice can cheat Bob by
broadcasting a previous_ctx that is more favorable to her
than the current channel balance reflected in the latest_ctx.

2.2 Watchtowers
To be able to go offline, Bob enlists the help of a watchtower
that is always online, and can monitor the blockchain for
cheating ctxs. Bob gives the watchtower the first 16 bytes
of every ctx ′s transaction ID (ctx_txid), and encrypts the
signed jtx to get an encrypted blob (ejtx) using the other 16
bytes of ctx_txid as the encryption key. Bob gives the pair
[ctx_txid_prefix, ejtx] to the watchtower every time a new
channel update is agreed upon.
The watchtower stores a map, where keys are

ctx_txid_prefixes and values are ejtxs. It then watches the
Bitcoin blockchain for any transaction whose txid_prefix
matches any of the keys in its own map. If the watchtower
finds a match, it extracts the txid_suffix from the blockchain
txid, and uses this txid_suffix to decrypt the corresponding
ejtx from its map to get the raw jtx, which is already signed
by the corresponding Bob of that channel. The watchtower
then broadcasts this jtx on the network to penalize the
corresponding Alice of that channel. In implementations
such as Lightning Network’s lnd [4], the watchtower is not
made to store the entire signed jtx, but an encoded struct
that has addresses, signatures, and other metadata to be able
to construct the jtx. This encoded struct is smaller than the
corresponding raw bitcoin transaction, but is still around
300-350 bytes. The ctx_txid_prefix is constant at 16 bytes.

A single watchtower could be watching multiple channels
and yet be oblivious to it. The watchtower just sees a
stream of [txid_prefix, ejtx] pairs that it has to store, possibly
forever. Such a watchtower cannot identify channels from
such a stream as there is no channel identifier in each pair.
This design preserves channel privacy in the sense that a
watchtower cannot identify how many channel updates any
particular channel has had. As a side note, if a channel has
been closed, channel participants have no standardized way
of informing the watchtower that a set of [txid_prefix, ejtx]
pairs can be deleted from the watchtower’s global map. One
possible way is for the watchtower to allocate a limit on
storage per user, and use a FIFO order to delete older items
from its storage.

3 OUTPOST
In this paper, we proposeOutpost, a watchtower construction
where it is possible to store the ejtx inside the ctx that is

exchanged between Alice and Bob as a part of the channel
update. In other words, we can store the “future” justice
transaction in the “present” commitment transaction. If this
is possible, all the watchtower has to store is a map where
keys are prefixes of ctx_txids and values are decryption keys
for the corresponding ejtx. The ejtx itself does not need
to be stored by the watchtower as it is now available in
the cheating ctx that appears on the blockchain. With the
Outpost construction, when a watchtower sees a cheating
ctx on the blockchain, the following happens:
(1) The watchtower looks up the transaction in its global

map, and finds the corresponding decryption key.
(2) The watchtower extracts the ejtx from the ctx which

was seen on the blockchain.
(3) The watchtower uses the decryption key found in its

map and decrypts ejtx to get the pre-signed jtx.
(4) The watchtower broadcasts this pre-signed jtx.

3.1 Why is this not possible in classic
Lightning?

For Alice and Bob to have a signed jtx for a corresponding ctx,
they need to first build the jtx with its inputs and outputs. The
outputs are straightforward. For the ctx broadcast-able by
Alice, the corresponding jtx will send all of Alice’s timelocked
balance to Bob without any timelocks. The inputs are not so
straightforward. To refer to ctx ′s outputs as the inputs for
jtx, we need to have ctx_txid. Let us say we have ctx_txid,
and use it construct a jtx, and get Alice and Bob to sign it.
Alice then uses some encryption key and encrypts jtx to
get ejtx. We “encode” ejtx in ctx by using the OP_RETURN
technique and make it the 3rd output of ctx. Now, we have a
self-loop problem, given that the ctx_txid is constructed by
double sha256 hashing the entire transaction, with its inputs
and outputs. The moment we add a 3rd output, the ctx_txid
present in ejtx is not the real ctx_txid. Given the way Bitcoin
txids are constructed, there is no obvious way to encode a
jtx that spends ctx, and still encode this jtx in the same ctx.

3.2 Two other constructions that do not
work

3.2.1 Data Drop Method. One well known way of encoding
arbitrary data in a Bitcoin transaction is to use the so-called
Data-Drop method using P2SH transactions as elaborated in
Sward et al [14]. To encode jtx inside ctx, we split ctx into two:
ctx1 and ctx2 . ctx ′1s output can be locked with scriptPubKey:
OP_HASH160 <hash(redeem_script)> OP_EQUAL

This will allow us to have a followup ctx2 whose scriptSig
has a redeem script of the type:
OP_DROP 2 <alice_pubkey> <bob_pubkey>
2 OP_CHECKMULTSIG

AFT ’19, October 21–23, 2019, Zürich, Switzerland Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer

And scriptSig of the type:
0 <alice_sig> <bob_sig> <ejtx> <redeem_script>

With this setup, we can include arbitrary data in the
scriptSig between the signatures and the actual redeem
script, and encode jtx in this data (shown as ejtx above).
The problem with this approach is that anyone can tamper
with the scriptSig in such a way that this arbitrary data
is changed, and the redeem script is still valid (scriptSig
malleability). There is no guarantee that ctx2 will make it to
the blockchain in such a way that ejtx can be read off of it.
Any intercepting forwarding full node, or even the miner
who mines the relevant block can change the transaction to
drop this extra data.

3.2.2 Data Hash Method. Another way of encoding
arbitrary data in a Bitcoin transaction that is immune
to scriptSig malleability is using the so-called Data-Hash
method using P2SH transactions; also elaborated in Sward et
al[14]. Here, like with the data-drop method, ctx is split into
ctx1 and ctx2 , and have ctx ′1s output locked in the same way
as before. We prevent the subsequent ctx ′2s scriptSig from
being tampered with, by encoding ejtx in the redeem script,
and then using this redeem script’s hash in ctx1. Say, ctx ′2s
redeem script looks like this:
OP_HASH160 <hash(ejtx)> OP_EQUALVERIFY
2 <alice_pubkey> <bob_pubkey> 2 OP_CHECKMULTSIG

ctx ′2s scriptSig will encode ejtx in the same way as before.
This will enforce that the scriptSig cannot be tampered
with while still keeping ctx2 valid. If any tampering of ctx ′2s
scriptSig (which contains ejtx) happens en route to a mined
block, ctx2 is not valid anymore as it cannot spend what ctx1
locks. The data hash method solves the scriptSig malleability
issue.
There is a subtler self-loop problem though: we include

ejtx in the redeem script of ctx2 , and the redeem script’s
hash in ctx1. This changes the txid of ctx1 and we have to
spend ctx1 (through ctx2) in ejtx. We are back to the self-loop
problem again, where we have to spend a UTXO in the future,
but encode this spending transaction in the present. The
moment we do the encoding, the future UTXO’s input txid
changes, thereby invalidating the encoding. With a linear
chain of transactions with the child spending the parents’
output, we run into this self-loop problem. In the following
section, we show how to encode the future in the present
by doing it in a separate transaction path, and then merging
these paths later.

3.3 Split Commitment Transaction
Construction

In Outpost, we have 3 commitment transactions that
represent a single channel state, as opposed to just 1

commitment transaction in classic Lightning. This is
in addition to the opening transaction and the justice
transaction. In this section, topen is common to both
parties, Alice and Bob. Without loss of generality, the
other 3 commitment transactions and 1 justice transaction
are assumed to be Alice’s to broadcast. Similar to classic
Lightning, symmetrically opposite transactions are held
by Bob, which Bob can broadcast in the same way as
Alice. Another convention in the following listings is that
pubkey_i can be signed by siд_i . In Section 4, we define these
transactions more precisely with respect to signing, holding
(not hodling), and broadcasting.

3.3.1 Opening Transaction. topen is exactly the same as in
classic Lightning, in the sense that it has to spend twoUTXOs,
one of which is owned by Alice and one by Bob.

Listing 1: Opening Transaction in Bitcoin Script-like
pseudocode
TOPEN: {

txid: TOPEN_TXID

vin: [{

txid: source TXN that pays Alice

scriptSig: <Alice sig_0 >

},{

txid: source TXN that pays Bob

scriptSig: <Bob sig_0 >

}]

vout: [{

value: <value of the channel >

scriptPubKey:

2

<Alice pubkey_1 >

<Bob pubkey_1 >

2 OP_CHECKMULTISIG

}]}

3.3.2 Commitment Transaction 1. The output of topen is
spendable by ctx1 (see Listing 2), which is similar to classic
Lightning’s commitment transaction, but differs in a few
important ways.

(1) Output at index 0: Alice’s balance is not spendable
by just Alice after a timelock (as in classic Lightning).
It is spendable with a multisig that both Alice and
Bob need to sign. This allows us to “fork” this output
into either the justice transaction or a followup
commitment transaction (ctx2). This ctx2 gives Alice’s
share to Alice, but guards it with a timelock. This
way, we realize classic Lightning’s key idea that the
broadcaster’s balance needs to be timelocked to allow
the counterparty to react in time.

Outpost: A Responsive Lightweight Watchtower AFT ’19, October 21–23, 2019, Zürich, Switzerland

(2) Output at index 1: As in classic Lightning, Bob’s part
is immediately spendable (no timelock) by Bob with
just his signature.

(3) Output at index 2: The auxiliary output, which can be
spent with a signature by both Alice and Bob, but has
a value that is insignificant - say, just enough to be
spendable with minimal fees. The sole purpose of the
auxiliary output is to be a part of a subsequent auxiliary
transaction (aux_ctx) which encodes ejtx. Its need will
become more clear in the subsequent paragraphs.

Listing 2: Commitment Transaction 1 in Bitcoin
Script-like pseudocode
CTX_1: {

txid: CTX_1_TXID

vin: [{

txid: TOPEN_TXID

index: 0

scriptSig:

0 <Alice sig_1 > <Bob sig_1 >

}]

vout: [{

value: <Alice balance >

scriptPubKey:

2

<Alice pubkey_2 >

<Bob pubkey_2 >

2 OP_CHECKMULTISIG

}, {

value: <Bob balance >

scriptPubKey:

<Bob pubkey_3 > OP_CHECKSIG

}, {

value: INSIGNIFICANT_VALUE (ϵ)

scriptPubKey:

2

<Alice pubkey_4 >

<Bob pubkey_4 >

2 OP_CHECKMULTISIG

}]}

3.3.3 Justice Transaction. The jtx (see Listing 3) spends the
multisig output of ctx1 and gives all of Alice’s share to Bob.
Note that Alice will sign this transaction only after Bob signs
it, and will not hand it over to Bob in raw format. Alice
encrypts this jtx with a key of her choice to derive ejtx and
hands over ejtx to Bob by encoding it in aux_ctx.

Listing 3: Justice Transaction in Bitcoin Script-like
pseudocode
JTX: {

txid: JTX_TXID

vin: [{

txid: CTX_1_TXID

index : 0

scriptSig:

0 <Alice sig_2 > <Bob sig_2 >

}],

vout: [{

value: <Alice balance >

scriptPubKey:

<Bob pubkey_5 > OP_CHECKSIG

}]}

3.3.4 Auxiliary Commitment Transaction. The purpose of
aux_ctx (see Listing 4) is to be a vehicle to encode the
encrypted justice transaction (ejtx) as its “non-monetary”
OP_RETURN output. We inject aux_ctx in the channel
by making it spend the small insignificant value from
ctx1, and make the final transaction ctx2 spend from
aux_ctx ′s “monetary” output. This way, the channel cannot
be closed unilaterally without broadcasting aux_ctx. Once
it is broadcast, ejtx is visible on the blockchain and anyone
with a key to decrypt it can get the signed raw jtx and can
broadcast it.

Listing 4: Auxiliary CTX in Bitcoin Script-like
pseudocode
AUX_CTX: {

txid: AUX_CTX_TXID

vin: [{

txid: CTX_1_TXID

index: 2

scriptSig:

0 <Alice sig_4 > <Bob sig_4 >

}]

vout: [{

value: INSIGNIFICANT_VALUE (ϵ)

scriptPubKey:

2

<Alice pubkey_6 > <Bob pubkey_6 >

2

OP_CHECKMULTISIG

}, {

value: 0

scriptPubKey: OP_RETURN EJTX

}]}

3.3.5 Commitment Transaction 2. The final piece of the
puzzle is ctx2 (see Listing 5). It spends outputs of both
ctx1 (the actual channel balance carrying commitment) and
aux_ctx (the ejtx carrying commitment). These outputsmake
up the inputs of ctx2 , and are timelocked using BIP68 [7]
sequence numbers. In Listing 5, we use a delay of 144

AFT ’19, October 21–23, 2019, Zürich, Switzerland Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer

blocks (1 day), which is represented as 0x00000090. The
consensus rules of Bitcoin do not let this transaction through
till 144 blocks have passed since both ctx1 and aux_ctx are
confirmed. This gives the watchtower enough time to look
for a cheating aux_ctx on the blockchain, and decrypt ejtx
which is visible aux_ctx. As a part of the protocol (refer 4),
Alice would have shared with Bob the decryption key for ejtx
in a followup state. Subsequently, Bob would have given this
key, along with ctx1_txid to the watchtower. This ensures
that the watchtower has everything it needs to construct jtx
and broadcast it without Bob ever having to be online.

Note that if jtx is confirmed on the Bitcoin blockchain, ctx2
becomes invalid as one of its inputs (ctx ′1s output number
#0) has now been consumed.

Listing 5: Commitment Transaction 2 in Bitcoin
Script-like pseudocode
CTX_2: {

txid: CTX_2_TXID

vin: [{

txid: CTX_1_TXID

index: 0

scriptSig:

0 <Alice sig_2 > <Bob sig_2 >

OP_TRUE

sequence: 0x00000090

},{

txid: AUX_CTX_TXID

index: 0

scriptSig:

0 <Alice sig_6 > <Bob sig_6 >

sequence: 0x00000090

}]

vout: [{

value: <Alice balance >

scriptPubKey:

<Alice pubkey_7 > OP_CHECKSIG

}]}

3.3.6 Cooperative Closure. If Alice and Bob are done using
their channel, and want to get their current balances out,
they create a classic Lightning like closure transaction that
spends topen and allocates balances to Alice and Bob based
on the latest state of the channel.With respect to opening and
closing a channel, Outpost’s transactions on the blockchain
will look exactly the same as in classic Lightning. Listing 6
shows a cooperative closure.

Listing 6: Cooperative closure in Bitcoin Script-like
pseudocode
CLOSURE: {

txid: CLOSURE_TXID

vin: [{

txid: TOPEN_TXID

index: 0

scriptSig:

0 <Alice sig_1 > <Bob sig_1 >

}]

vout: [{

value: <Alice balance >

scriptPubKey:

<Alice pubkey_8 > OP_CHECKSIG

}, {

value: <Bob balance >

scriptPubKey:

<Bob pubkey_8 > OP_CHECKSIG

}]}

3.3.7 Cheating. If Alice cheats by broadcasting an earlier
state in the form of ctx1, aux_ctx, and ctx2 to the
network, ctx1 and aux_ctx can be mined and confirmed
immediately, but ctx2 is timelocked. In the timelocked time,
the watchtower can watch for aux_ctx on the Bitcoin
blockchain, extract and decrypt ejtx from it to get jtx and
broadcast jtx, thereby invalidating ctx2 , and also giving Bob
the entire channel balance.

3.3.8 Unilateral Closure. If Bob goes offline, and Alice
wants to unilaterally close the channel (not cheating), she
broadcasts the current state in the form of ctx1, aux_ctx, and
ctx2 . She knows that the decryption key for ejtx from the
current state has not been shared with Bob, and hence, not
with any watchtower either. This makes Alice get back her
side of the balance, but after a timelock. This tradeoff of the
unilateral channel closure having to wait for timelocks to
expire is the key design insight of classic Lightning, and we
preserve the same principle, but through BIP68 input locks
in ctx2 .

3.3.9 Griefing. Griefing refers to a class of attacks where
the attacker does not want to make a profit, but puts
the counterparty at a disadvantage by deviating from the
protocol. In our protocol, the watchtower can only help
if both ctx1 and aux_ctx are on the blockchain. Alice
can initiate a griefing attack when Bob is offline by
broadcasting a ctx1 from an older state and not broadcasting
the corresponding aux_ctx and ctx2 . Note that Alice is not
cashing out here, but the watchtower cannot help Bob either
- because aux_ctx is not published on the blockchain.

This attack is possible because topen has been spent by
ctx1, and has created a UTXO that cannot be spent by Bob
alone. We can mitigate this by adding a flow to ctx1 such that
the UTXO it creates can be spent by Bob after a timelock
unless it is spent by aux_ctx. This incentivizes Alice to not
publish just ctx1. If she does that, and does not publish the

Outpost: A Responsive Lightweight Watchtower AFT ’19, October 21–23, 2019, Zürich, Switzerland

corresponding aux_ctx and ctx2 , the entire channel balance
can be swept by Bob after this timelock expires. Note that
this timelock has to be larger than the timelock in ctx2 .

topen

ctx1 aux_ctx

ctx2jtx

ϵ + ejtx as data

timelocked
timelockedif fraud

Figure 1: Transaction Flow

4 PROTOCOL
In this section, we elaborate on how, at each stage of the
protocol, transactions are signed and exchanged by Alice and
Bob. Decryption keys of encrypted blobs are also exchanged
as a part of the protocol.

During channel opening, as with classic Lightning, Alice
and Bob construct a single topen using their own inputs, and
make it spendable by a multisig that they both need to sign.
Note that between both Alice and Bob, there is only one
topen. Alice and Bob do not sign this topen before the follow-
up transactions of the next step (ctx1, aux_ctx, and ctx2) have
been exchanged. This ensures that if either party disappears
after the signed topen has been broadcast, the other party is
not held in limbo and can close the channel unilaterally. In
the following protocol description, we use “alice” and “bob”
superscripts to denote the transactions that are held by Alice
and Bob. In Lightning channels, both parties keep symmetric
transactions to represent the collective state.

4.1 Opening Transaction
4.1.1 Bob → Alice .

• A UTXO that Bob controls.
• Pubkeys that are required for followup
transactions.

4.1.2 Alice → Bob.
• topen with Alice’s own UTXO filled in. This topen
has its multisig output filled in with one of Bob’s

pubkeys and one of Alice’s own pubkeys. This
topen is not signed by either Alice or Bob yet.

• Two versions of ctx1 (ctxalice1 , ctxbob1) which share
the same input transaction topen. These two ctx1s
have three outputs each. In ctxalice1 , the 2nd singlesig
output is sent to Bob’s pubkey. In ctxbob1 , the 2nd
singlesig output is sent to Alice’s pubkey. Note that
Alice can construct both ctx1s at this stage, and can
even sign for her part of the input (topen) of each
ctx1.

4.1.3 Bob → Alice .

• ctxalice1 signed by Bob. Bob signs ctxbob1 and keeps
it for himself.

• jtxbob with Alice’s balance sent to Bob’s pubkey.
Bob signs jtxbob without worry because its output
is being sent to him.

4.1.4 Alice → Bob.

• jtxalice with Bob’s balance sent to Alice’s pubkey.
Alice signs jtxalice without worry because its
output is being sent to her.

• aux_ctxbob: Alice constructs the full signed jtxbob

with her own signature, and encrypts it with a
random key to derive ejtxbob. She then constructs
aux_ctxbob with two outputs, one of which is
the OP_RETURN prefixed ejtxbob. Alice signs
aux_ctxbob and sends it to Bob. After getting
aux_ctxbob signed by Alice, Bob signs it as well,
but keeps it for himself.

• ctxbob2 : Alice also constructs the signed ctxbob2 ,
which needs her signatures for both its inputs:
ctxbob1 and aux_ctxbob. When Bob gets ctxbob2 signed
by Alice, he signs it and keeps it for himself.

4.1.5 Bob → Alice .

• aux_ctxalice: Bob constructs the fully signed jtxalice
with his own signature, and encrypts it with a
random key to derive ejtxalice . He then constructs
aux_ctxalice with two outputs, one of which is
the OP_RETURN prefixed ejtxalice. Bob signs
aux_ctxalice and sends it to Alice. After getting
aux_ctxalice signed by Bob, Alice signs it as well,
but keeps it for herself.

• ctxalice2 : Bob also constructs the signed ctxalice2 ,
which needs his signatures for both its inputs:
ctxalice1 and aux_ctxalice. When Alice gets ctxalice2 ,
she signs it and keeps it for herself.

• topen: At this point, Bob has all the followup
transactions signed by Alice with him, and can
safely sign topen.

4.1.6 Alice → Blockchain.

AFT ’19, October 21–23, 2019, Zürich, Switzerland Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer

• topen: At this point, Alice has all the followup
transactions signed by Bob with her, and can safely
sign topen and broadcast it on the Bitcoin network.

4.2 State Update
4.2.1 Bob → Alice .

• Same as from the Opening Transaction, except for
the UTXO part.

4.2.2 Alice → Bob.

• Same as from Opening Transaction, except for the
topen part.

4.2.3 Bob → Alice .

• Same as from Opening Transaction.

4.2.4 Alice → Bob.

• Same as from Opening Transaction.

4.2.5 Bob → Alice .

• Same as from Opening Transaction.
• Decryption Key: At this point, Bob has all the
followup transactions signed by Alice with him
and has effectively moved to the next state. He can
now let Alice decrypt the previous state’s ejtxbob
if it is ever seen on the blockchain (through the
confirmation of aux_ctxbob). To do that, Bob sends
Alice the key that can decrypt ejtxbob from the
previous state. Now, Alice can send aux_ctxalice’s
txid and this decryption key to the watchtower.

4.2.6 Alice → Bob.

• Decryption Key: At this point, Alice has all the
followup transactions signed by Bob with her and
has effectively moved to the next state. She can
now let Bob decrypt the previous state’s ejtxalice
if it is ever seen on the blockchain (through the
confirmation of aux_ctxalice). To do that, Alice
sends Bob the key that can decrypt ejtxalice from
the previous state. Now, Bob can send aux_ctxbob’s
txid and this decryption key to a possibly different
watchtower.

5 LIMITATIONS
5.1 OP_RETURN size limit
One key limitation of the Outpost construction is the size
constraint on the OP_RETURN output in aux_ctx. This
size limitation is enforced by the IsStandard function of
Bitcoin Core’s reference implementation, which drops any
transaction that has an OP_RETURN output of more than
80 bytes. This rule is not enforced by the Bitcoin consensus
mechanism, in the sense that transactions with such outputs

are considered valid, but not standard. Miners who see these
transactions can still add them to their block template and
generate valid blocks with them. So, aux_ctx can have the
OP_RETURN output we want and can be handed to the
miners directly to be included in their block template without
violating Bitcoin’s consensus rules.

Another way to circumvent this size limit is to use the
data-hash method from [14] to encode arbitrary data in a
standard Bitcoin transaction. In our case, we have to split
aux_ctx into two transactions, say aux_ctx1 and aux_ctx2 .
In aux_ctx1, there will be a hash of a specific redeem script
(thereby making aux_ctx1 a P2SH transaction). The actual
redeem script will be in aux_ctx2 andwill enable the scriptSig
of aux_ctx2 to have the encrypted payload. The payload in
our case is a typical jtx that spends using a multisig and pays
to a P2PKH address. With signatures, these transactions
are typically ∼350 bytes long. They can be encrypted with
AES-128 and we get an ejtx of size ∼360 bytes. This can
be encoded in the scriptSig of aux_ctx2 quite easily as the
maximum script element size in Bitcoin is 520 bytes.

5.2 Transaction Bloat and Complexity
In the Outpost construction, instead of one ctx per party
to handle the channel update, like in classic Lightning, we
have 3 transactions per party per state. This is not a true
limitation, in that we are not increasing storage cumulatively.
Each party needs to just keep their latest state in storage, and
can discard all previous states. So, storing one transaction in
classic Lightning vs three transactions with Outpost should
not matter a lot. In classic Lightning, each party has to store
the ctx_txid of each ctx that its counter-party can broadcast,
to watch for cheating transactions. Along side the ctx_txid,
the party has to also store the revocation key needed to
construct the jtx for a cheating ctx. In Outpost, each party has
to store the ctx1_txid of each ctx1 that its counter-party has to
broadcast to cheat. Along side the ctx1_txid, the party has to
also store the decryption key for the encoded ejtx inside the
aux_ctx. At the node level, this extra storage requirement
is the same in Outpost as in classic Lightning. But at the
watchtower level, it leads to considerable savings, which we
will explore in the Analysis section.

6 OPTIMIZATION
Each party can derive their jtx encryption keys
independently of each other, forcing the counter-party to
store these decryption keys independently. We can optimize
some of this storage away by deriving encryption keys
using a hash-chain or an encrypted-key-chain. Say, Alice
wants to generate 1000 encryption keys such that they can
be used in a payment channel with Bob - with one key being
used for each state update. As state updates happen, Alice

Outpost: A Responsive Lightweight Watchtower AFT ’19, October 21–23, 2019, Zürich, Switzerland

will give Bob these keys one by one, and Bob has to store all
of them, along with the ctx1_txid for each key. This can be
made more efficient if Bob can just store the most recent
key he received from Alice, but can compute the other keys
based on this latest key.
There are multiple schemes that Alice could use to

generate encryption keys such that if Ki and Ki+1 are two
keys with timestamps i and i + 1, then:

• It is easy for Alice to generate either key from the
other.

• It is hard for Bob to generate Ki+1 from Ki , but easy to
generate Ki from Ki+1.

We briefly outline 2 such schemes:
• Alice pre-generates these keys by starting with one
random key, and generating subsequent keys by
hashing the previous key, say using SHA256 - thereby
forming a hash-chain. She starts her channel with
Bob by using the last such generated key, and at each
followup state, uses the hash preimage (which is also a
hash of its own preimage) as the next key. Bob can
now discard old keys as new keys come along, as
he can always reconstruct them using the commonly
known one-way hash function if he knows the current
key and the index number of what key he wants to
reconstruct. This scheme needs Alice to pre-compute
hashes and store them on the “forward chain”, thereby
incurring both computation and storage costs. Going
on the “backwards chain” is a matter of trivial lookup.
A more advanced version of this scheme is found in
[13].

• Alice creates an RSA key pair of sufficient length (say,
modulus of size 2048 bits), keeps the private key to
herself, and shares the public key with Bob. Say, e and
n are the exponent and the modulus components of the
public key, Alice can start the key chain with a large
random number in the range [2, n − 1) and decrypt
it using the private key to generate the next key in
the sequence. Note that every number in the range
[2, n − 1) has a valid RSA decryption. A secure one-
way hash function can be used as a key derivation
function on this large number to generate the (smaller)
symmetric key required to encrypt jtx to get ejtx. Bob
can always go back the chain and find older keys by
encrypting the latest key using the public key that he
knows, but cannot create newer keys, as it requires
decrypting the latest key.

We can even optimize away the need to store ctx1_txid for
each state update. We can embed a channel ID in either ctx1
or aux_ctx which we can then watch for on the blockchain.
We also need to track the index of the state to be able to
derive the right decryption key to construct the necessary

jtx. The channel ID and the index together can be stored as
the 4th output of ctx1 in an OP_RETURN instruction. This
gives us constant storage per channel with respect to what
we have to watch for on the blockhain. All we need to store
per channel is the channel ID and seed of the hash-chain.

Using either of the schemes above, Bob’s storage savings
can also be realized at the watchtower level, if Bob is willing
to let the watchtower know that all of his state updates are
from the same channel by providing a channel ID in each of
his watchtower requests. The watchtower then watches the
blockchain for this ID, and can reconstruct all it needs from
the transactions that appear on the blockchain that contain
this ID. In case of a cooperative closure of a channel, Bob
can get the watchtower to free up storage allocated to this
channel ID.

7 ANALYSIS
We study watchtower storage costs for Outpost vs. Classic
Lightning under two conditions.

• Known channel: Watchtower has access to a channel
identifier in its state update stream.

• Unknown channel: Watchtower is oblivious to channel
identities.

Classic
Known Channel N · size(ejtx) + 1 · size(txid)

Unknown Channel N · (size(txid) + size(ejtx))
Outpost

Known Channel 1 · (size(txid) + size(key))
Unknown Channel N · (size(txid) + size(key))
In Classic Lightning, if the watchtower knows which

state updates belong to which channel, the watchtower still
has to store the encrypted blobs corresponding to justice
transactions (as these blobs have the victim’s signature).
Storage is proportional to how many updates the channel
has seen (denoted by N) times the size of ejtx. As per LND’s
implementation of watchtowers [5], ejtx need not contain the
full transaction, but just the relevant addresses, signatures,
and other metadata. Our estimate is that ejtx will be around
300-350 bytes. Note that if the watchtower does not know
the identity of the channels, the cost is the same because it
still has to store all the ctx_txids.

In Outpost, if the watchtower does not know the channel
identifiers per state update, it has to store the full decryption
key per ctx1_txid. This puts the storage cost at N times
the size of the decryption key, which can be as low as 16
bytes for a symmetric encryption scheme like AES-128. If
the watchtower does knows channel identifiers per state
update, we use the hash-chain trick to reduce the storage
requirements to the constant size of the channel ID and size
of the hash-chain seed. We achieve this constant storage by
offloading all the storage to the blockchain itself. Note that

AFT ’19, October 21–23, 2019, Zürich, Switzerland Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer

we are not bloating the blockchain here. These transactions
appear in the blockchain only when one of the parties
attempts to cheat or grief their counterparty. We believe
that given the incentives of Lightning (and thus, Outpost),
this is not common. In the preferred case, the commitment,
auxiliary commitment, or justice transactions do not appear
on the blockchain, and we only see the cooperative closure
transaction.

With Outpost, across billions of state updates per channel,
we have the option of constant storage per channel. Or if we
want stricter privacy with respect to the watchtower, we get
storage savings of 16 bytes vs 350 bytes per state update.

8 RESPONSIVE WATCHTOWER DESIGN
We posit that the best way to compensate a watchtower is
to pay-per-update. In this scenario, every time a channel
sends an update to the watchtower it pays a small fee to the
watchtower. In this case, it is reasonable for a channel to
expect the following from the watchtower.

• The watchtower has access to the state updates that
have been sent to it so far.

• The watchtower was online when the latest Bitcoin
block was seen.

We present a scheme here with which a watchtower can
prove these two conditions to the channels it serves.
If we are using the non-hash-chain version of Outpost,

the watchtower needs to prove to every channel that it has
access to the set of all pairs [ctx1_txid, key] that a channel
has sent it. Let us call [ctx1_txid, key] as the datarow that the
watchtower has to store. The watchtower can build a Merkle
tree out of this set of datarows, and commit theMerkle root to
the next Bitcoin block in an OP_RETURN data-transaction.
The channel can now ask the watchtower for proof of a
specific datarow in the set it has sent it, and the watchtower
has to respond with a Merkle proof for the specific datarow
that also comforms to the Merkle root that was committed in
the Bitcoin block. To ensure that the same proof that worked
for Block Bi does not work for Block Bi+1 we can append
the blockhash of Block Bi to each datarow so that the proof
is unique per datarow per block.
This proof scheme can be generalized to many channels

by building a Merkle tree out of the Merkle root of each
channel’s Merkle tree, and committing this “global” Merkle
root to the Bitcoin blockchain. Each channel can then
get a proof about any specific datarow that is has sent
the watchtower. This should make the idea of paying the
watchtower per update more palatable to a channel.

9 CONCLUSION
Watchtowers typicallymonitor tens of thousands of channels,
and can potentially handle billions of updates per channel.

Getting an order of magnitude storage savings will go a long
way in making it attractive for developers to implement and
host watchtower services for channels to use. We believe
that the additional option of having constant storage per
channel makes Outpost even more appealing. Additionally,
we have shown a novel way to encode a “future” transaction
that spends a “present” transaction’s outputs in the same
“present” transaction using parallel transaction flows, which
might have other novel applications in the Bitcoin ecosystem.

ACKNOWLEDGMENTS
The authors would like to thank Patrick McCorry for
comments on an earlier draft of the paper and StackExchange
user fgrieu for their insights on RSA.

REFERENCES
[1] Bolt Authors. [n. d.]. Lightning Network Specifications. https://github.

com/lightningnetwork/lightning-rfc. ([n. d.]). [Accessed: 2019-05-24].
[2] C-Lightning authors. [n. d.]. c-lightning - a Lightning Network

implementation in C. https://github.com/ElementsProject/lightning.
([n. d.]). [Accessed: 2019-05-24].

[3] Eclair authors. [n. d.]. A scala implementation of the Lightning
Network. https://github.com/ACINQ/eclair. ([n. d.]). [Accessed: 2019-
05-24].

[4] LND authors. [n. d.]. LND: The Lightning Network Daemon. https:
//github.com/lightningnetwork/lnd. ([n. d.]). [Accessed: 2019-05-24].

[5] LND Authors. [n. d.]. LND: The Lightning Network Daemon,
Watchtowers. https://github.com/lightningnetwork/lnd/blob/master/
watchtower/blob/justice_kit.go. ([n. d.]). [Accessed: 2019-05-24].

[6] Christian Decker and Roger Wattenhofer. 2015. A fast and scalable
payment network with bitcoin duplex micropayment channels. In
Symposium on Self-Stabilizing Systems. Springer, 3–18.

[7] Mark Friedenbach, BtcDrak, Nicholoas Dorier, and kinoshitajona. [n.
d.]. BIP68: Relative lock-time using consensus-enforced sequence
numbers. ([n. d.]). https://github.com/bitcoin/bips/blob/master/
bip-0068.mediawiki [Accessed: 2019-05-24].

[8] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis,
Hubert Ritzdorf, and Srdjan Capkun. 2016. On the security and
performance of proof of work blockchains. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security.
ACM.

[9] MIT Digital Currency Initiative LIT authors. [n. d.]. Lightning Network
node software. https://github.com/mit-dci/lit. ([n. d.]). [Accessed:
2019-05-24].

[10] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash
system. (2008).

[11] Olaoluwa Osuntokun. 2018. Hardening Lightning, Stanford Cyber
Initiative. (2018).

[12] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network:
Scalable off-chain instant payments. (2016).

[13] Rusty Russel. 2016. Efficient Chains Of Unpredictable Numbers.
https://github.com/rustyrussell/ccan/blob/master/ccan/crypto/
shachain/design.txt. (2016).

[14] Andrew Sward, Ivy Vecna, and Forrest Stonedahl. 2018. Data Insertion
in Bitcoin’s Blockchain. Ledger 3 (2018).

https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
https://github.com/ElementsProject/lightning
https://github.com/ACINQ/eclair
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd/blob/master/watchtower/blob/justice_kit.go
https://github.com/lightningnetwork/lnd/blob/master/watchtower/blob/justice_kit.go
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/mit-dci/lit
https://github.com/rustyrussell/ccan/blob/master/ccan/crypto/shachain/design.txt
https://github.com/rustyrussell/ccan/blob/master/ccan/crypto/shachain/design.txt

	Abstract
	1 Introduction
	2 Background
	2.1 Lightning Network
	2.2 Watchtowers

	3 Outpost
	3.1 Why is this not possible in classic Lightning?
	3.2 Two other constructions that do not work
	3.3 Split Commitment Transaction Construction

	4 Protocol
	4.1 Opening Transaction
	4.2 State Update

	5 Limitations
	5.1 OP_RETURN size limit
	5.2 Transaction Bloat and Complexity

	6 Optimization
	7 Analysis
	8 Responsive Watchtower Design
	9 Conclusion
	Acknowledgments
	References

